Способ обработки призабойной зоны пласта мкс (многокомпонентными составами )
Номер инновационного патента: 28935
Опубликовано: 15.09.2014
Авторы: Еникеев Равиль Исмаилович, Воин Олег Викторович, Трифонов Роман Александрович
Формула / Реферат
13
Реферат
Изобретение относится к области нефтегазодобывающей промышленности, а именно к обработке призабойной зоны пласта для реагентного разрушения карбонатных, глинистых и солевых образований.
В основу изобретения поставлена задача повышение эффективности обработки призабойной зоны скважин за счет многостадийности и проведения подготовительных работ перед основной обработкой, регулирования скорости взаимодействия с породой пласта многокомпонентных составов (далее - МКС), очистки от глинистых дисперсных частиц, предотвращения выпадения нерастворимых осадков, очистки от АСПО.
Согласно предлагаемого решения, продавливают в продуктивный пласт МКС1 (первый многокомпонентный состав), воздействующий на карбонатные отложения и подготавливающий глинистые образования к реакции обмена, при необходимости производят технологический отстой, промывку, освоение, при необходимости в продуктивный пласт продавливают МКС2 (второй многокомпонентный состав), позволяющий преобразовать структуру предварительно обезжиренных глинистых минералов, разрушая её, при необходимости производят технологический отстой, извлечение продуктов реакции и освоение, в зависимости от геологических условий, при необходимости в продуктивный пласт продавливают МКС 3 (третий многокомпонентный состав), при необходимости производят технологический отстой, извлечение продуктов реакции и освоение. Многокомпонентные составы подбирают исходя их геологических условий и строения продуктивного пласта, они содержат компоненты, позволяющие регулировать скорость реакции, значительно снизить коррозионную активность компонентов, повысить дебит и приемистость скважин, уменьшить нагрузки на глубинно-насосное оборудования. Многокомпонентные составы имеют определенную пропорцию составных частей, при этом для удешевления составы могут содержать воду.
Технический результат заключается в повышении дебита, приёмистости скважины, восстановление и увеличение естественной продуктивности скважины, снижения скин-фактора, уменьшения нагрузки на глубинно-насосное оборудование.
Текст
(51) 21 43/27 (2006.01) КОМИТЕТ ПО ПРАВАМ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ МИНИСТЕРСТВА ЮСТИЦИИ РЕСПУБЛИКИ КАЗАХСТАН ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ИННОВАЦИОННОМУ ПАТЕНТУ многокомпонентный состав), воздействующий на карбонатные отложения и подготавливающий глинистые образования к реакции обмена, при необходимости производят технологический отстой,промывку, освоение, при необходимости в продуктивный пласт продавливают МКС 2 (второй многокомпонентный состав),позволяющий преобразовать структуру предварительно обезжиренных глинистых минералов, разрушая е,при необходимости производят технологический отстой, извлечение продуктов реакции и освоение, в зависимости от геологических условий, при необходимости в продуктивный пласт продавливают МКС 3 (третий многокомпонентный состав),при необходимости производят технологический отстой, извлечение продуктов реакции и освоение. Многокомпонентные составы подбирают исходя их геологических условий и строения продуктивного пласта, они содержат компоненты, позволяющие регулировать скорость реакции, значительно снизить коррозионную активность компонентов, повысить дебит и приемистость скважин, уменьшить нагрузки на глубинно-насосное оборудования. Многокомпонентные составы имеют определенную пропорцию составных частей, при этом для удешевления составы могут содержать воду. Технический результат заключается в повышении дебита, примистости скважины,восстановление и увеличение естественной продуктивности скважины, снижения скин-фактора,уменьшения нагрузки на глубинно-насосное оборудование.(72) Воин Олег Викторович Трифонов Роман Александрович Еникеев Равиль Исмаилович(73) Товарищество с ограниченной ответственностью Фрак Джет(74) Русакова Нина Васильевна Жукова Галина Алексеевна Ляджин Владимир Алексеевич Иванова Антонина Сергеевна Ляджин Алексей Владимирович(54) СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА МКС(57) Изобретение относится к области нефтегазодобывающей промышленности, а именно к обработке призабойной зоны пласта для реагентного разрушения карбонатных, глинистых и солевых образований. В основу изобретения поставлена задача повышение эффективности обработки призабойной зоны скважин за счет многостадийности и проведения подготовительных работ перед основной обработкой, регулирования скорости взаимодействия с породой пласта многокомпонентных составов (далее - МКС),очистки от глинистых дисперсных частиц,предотвращения выпадения нерастворимых осадков,очистки от АСПО. Согласно предлагаемого решения, продавливают в продуктивный пласт МКС 1 Изобретение относится к области нефтяной и газовой промышленности, а именно к обработке призабойной зоны пласта. Известен способ реагентной разглинизации скважины, включающий на первой стадии процесса диспергирование глинистых материалов в результате ионообменных реакций с водными растворами щелочных металлов, на второй стадии - растворение глинистых частиц с последующим удалением продуктов реакции. Для более эффективного растворения карбонатных коллекторов и алюмосиликатов используется смесь соляной и плавиковой кислот в экспериментально установленном соотношении (Патент РФ 2055983,МПК Е 21 В 43/27, опубл. 10.03.1996 г., бюл.7). Однако данный способ на первой стадии не производит очистку глинистых частиц от органических соединений, которые мешают идти ионообменным реакциям. В результате диспергирования глинистых материалов с водными растворами щелочных металлов происходит выпадение осадка солей металлов, не все они растворимы, это отрицательно сказывается на продуктивности. При движении по НКТ кислота реагирует с оксидом железа, что приводит к образованию хлорного железа 3 2362332.(1) При полной нейтрализации кислотного раствора хлорное железо выпадает в осадок в виде гидрата окиси железа 3, закупоривающего пласт 33 Н 2(ОН)33 НС.(2) Соли алюминия, которые могут образоваться в растворе кислоты в результате частичного разложения цементного камня или некоторых составляющих глинистого материала, действуют аналогично солям железа. И при повышении рН до 5 происходит выпадение в осадок гидрата окиси алюминия 33 Н 2 А (ОН)33 НС.(3) При наличии карбонатных отложений в коллекторе и призабойной зоне при взаимодействии плавиковой кислоты с карбонатами образуется нерастворимый осадок 2, который резко снижает дебит скважины. Способ не содержит добавок,снижающих коррозийное воздействие, что в свою очередь негативно действует на эксплуатационную колонну и образует нерастворимый осадок гидроокиси железа. Способ не предусматривает сведения к минимуму возможности выпадения в осадок 2 6,36 по следующей реакции. 62262 Н 2(4) Фторкремниевая и фторалюминиевая кислоты,полученные при реакции, вступают в реакцию с ионамиилииз солейи КС в солной воде и выпадают в нерастворимые осадки 2 6, 36. Способ не содержит добавок, повышающих проникающую способность состава. Способ не содержит добавок, позволяющих эффективно бороться с АСПО(асфальтосмолистых парафиновых отложений). Вследствие этого, данный способ не позволяет осуществить эффективную очистку призабойной зоны пласта в терригенных и карбонатных коллекторах, при этом оказывает 2 негативное воздействие на эксплуатационную колонну при низкой проницающей способности. Наиболее близким к предлагаемому является способ обработки призабойной зоны нефтяного пласта, который включает продавливание кислотного реагента, содержащего, мас. соляную кислоту 8-76,фтористоводородную кислоту 1,5-18, поверхностноактивное вещество 0,3-2,5, ингибитор коррозии 0,1-2,0,растворитель остальное, через скважину в зону продуктивного пласта в объемах, обеспечивающих превышение фильтрационных сопротивлений в удаленной от скважины зоне пласта над таковыми в ее призабойной зоне, проведение технологической выдержки и удаление отработанных продуктов реакции из обрабатываемой зоны путем депрессионного воздействия на скважину, причем при значении условного коэффициента приемистости скважины Кпс не менее 2,5 удаление отработанных продуктов реакции осуществляют в режиме эксплуатации скважины, а при Кпс менее 2,5 принудительно, при достижении коэффициента продуктивности Кпр не менее 0,5 м 3/сут.атм принудительное извлечение продуктов реакции из обрабатываемой зоны прекращают. (Патент РФ 2346153, МПК Е 21 В 43/27, опубл. 10.02.2009, бюл. 4). Недостатком данного способа является возможность загрязнения пласта вторичными осадками, образующимися в ходе обработки призабойной зоны. А именно выпадение из нейтрализованного кислотного раствора осадка солей алюминия, которые могут образоваться в растворе кислоты в результате частичного разложения цементного камня или некоторых составляющих глинистого материала. При повышении рН до 5 происходит выпадение в осадок гидрата окиси алюминия 33 Н 2 А (ОН)33 НС. (5) В тонкопористых породах отношение объема кислоты в поре к реагируемой поверхности настолько мало, что скорость реакции раствора кислоты с породой очень высока. Таким образом, на удалнном радиусе воздействия кислотный состав практически нейтрализуется, за счт реакции с карбонатными отложениями, при этом плавиковая кислота при реакции с известняками образует нерастворимый осадок соли 2.(6) СаСО 322 Н 2 С 3 Способ не содержит добавок, позволяющих регулировать и увеличить длительность реакции. Способ не предусматривает сведение к минимуму возможности выпадения в осадок 2 6, 3 6 по следующей реакции. 62262 Н 2 (7) Фторкремниевая и фтороалюминиевая кислоты,полученные при реакции, вступают в реакцию с ионамиилииз солейи КС в солной воде и выпадают в нерастворимые осадки 2 6, 36. В процессе продавливания кислотного состава реакция протекает непосредственно в ближней части призабойной зоны, без воздействия на отдалнную часть. Способ не позволяет эффективно проводить дегидратацию и разрушать глинистые образования. Кроме того, Способ имеет высокую стоимость. Высокая концентрация кислот до 94 по массовой доле отрицательно сказывается на коррозийной стойкости эксплуатационных колонн. Таким образом,данный способ подходит не для всех типов коллекторов, не позволяет осуществить эффективную очистку средней и дальней призабойной зоны пласта. Кроме того, способ не оказывает эффективного воздействия на карбонатные и терригенные,заглинизированные коллектора. В основу изобретения поставлена задача в повышение эффективности обработки призабойной зоны скважин за счет многостадийности и проведения подготовительных работ перед основной обработкой,регулирования скорости взаимодействия с породой пласта многокомпонентных кислотных составов(далее - МКС), очистку от глинистых дисперсных частиц, предотвращения выпадения нерастворимых осадков, очистку от АСПО. Ожидаемый технический результат заключается в повышении дебита,примистости скважины,восстановление и увеличение естественной продуктивности скважины, снижения скин-фактора,уменьшения нагрузки на глубинно-насосное оборудование. Ожидаемый технический результат достигается тем, что в способе производят обработку призабойной зоны пласта многокомпонентными составами (МКС) для реагентного разрушения карбонатных и глинистых образований, составляющих и кольматирующих призабойную зону пласта согласно решению,продавливают в продуктивный пласт первый многокомпонентный состав (МКС 1), воздействующий на карбонатные отложения, подготавливающий глинистые образования к реакции обмена и вытесняющий солиииз системы пор, при необходимости производят технологический отстой,промывку,извлечение продуктов реакции,продавливают в продуктивный пласт второй многокомпонентный состав (МКС 2), позволяющий преобразовать структуру предварительно обезжиренных глинистых минералов, разрушая е, при необходимости производят технологический отстой,извлечение продуктов реакции и освоение, в зависимости от геологических условий в пласт могут закачать третий многокомпонентный состав (МКС 3),при необходимости производят технологический отстой, извлечение продуктов реакции и освоение. Многокомпонентные составы подбирают исходя из геологических условий и строения продуктивного пласта, они содержат компоненты, позволяющие регулировать скорость реакции,значительно снижающие коррозионную активность компонентов,имеющие определнную пропорцию трх кислот, при этом для удешевления составы могут содержать воду. Данные о многокомпонентных составах,используемых в терригенных коллекторах с различным содержанием карбонатов, приведены в таблице 1. Таблица 1 Многокомпонентные составы, используемые в различных коллекторах МКС 1 (Первый многокомпонентный состав). Терригенные коллектора с содержанием карбонатов более 3 Терригенные коллектора с содержанием карбонатов 0-3 Компоненты Содержание, вес. Среднее Содержание Компоненты Содержание, вес. Среднее содержание НС 1 3-30 12 НС 3-25 12 Растворитель 0-30 10 Растворитель 0-50 20 Вытеснитель 0-5 0,5 Вытеснитель 0-5 0,5 Гидрофобизат 0,01-5 0,5 Гидрофобизатор 0,01-5 0,5 Стабилизатор 0,1-5 0,5 Стабилизатор 0,1-5 0,5 Ингибитор коррозии 0,01-5 0,5 Ингибитор коррозии 0,01-5 0,5 Растворитель АСПО 0-5 0,5 Растворитель АСПО 0-5 0,5 Вода остальное 75,5 Вода остальное 65,5 МКС 2 (Второй многокомпонентный состав). Терригенные коллектора с содержанием карбонатов более 3 Терригенные коллектора с содержанием карбонатов 0-3 Компоненты Содержание, вес. Среднее содержание Компоненты Содержание, вес. Среднее содержание С 3-30 12 НС 3-30 12 Фторсодержащие 0,1-10 0,5 Фторсодержащие 0,5-10 2,5 кислоты кислоты Растворитель 0-70 10 Растворитель 0-70 20 Гидрофобизатор 0,01-5 0,5 Гидрофобизатор 0,01-5 0,5 Стабилизатор 0,1-5 0,5 Стабилизатор 0,1-5 0,5 Ингибитор коррозии 0,01-5 0,5 Ингибитор коррозии 0,01-5 0,5 Растворитель АСПО 0-5 0,5 Растворитель АСПО 0-5 0,5 Вода остальное 75,5 Вода остальное 65,5 МКС 3 (Третий многокомпонентный состав). Терригенные коллектора с содержанием карбонатов более 3 Терригенные коллектора с содержанием карбонатов 0-3 Компоненты Содержание, вес. Среднее содержание Компоненты Содержание, вес. Среднее содержание Растворитель 10-90 25 Растворитель 1 10-90 25 1 Растворитель 2 0-50 25 Растворитель 2 0-50 25 Гидрофобизат 0,1-15 1 Гидрофобизатор 0,1-15 1 Стабилизатор 0-15 1 Стабилизатор 0-15 1 Вода остальное 48 Вода остальное 48 В качестве фторсодержащих кислот используют фтористоводородную кислоту,борфтористоводородную кислоту (4) и др. В качестве вытеснителя используют 4. В качестве растворителя, растворителя 1 и растворителя 2 используют изопропиловый спирт, ацетон, этанол,метанол, нефрас или спиртовосодержащие отходы производств. В качестве гидрофобизатора используют ИВВ-1, РХП-10, Нефтенол К, дипроксамин,алкилфенол и другие. В качестве стабилизатора используют оксиэтилидендифосфоновую, уксусную,щавелевую и другие кислоты. В качестве растворителя АСПО используют толуол нефтяной в смеси с неионогенным ПАВ или 4,4-диметил-1,3-диоксан и другие. В качестве ингибитора коррозии используют КИ-1 , ИКУ-118, амфикор, ТНХС и другие. Способ осуществляется следующим образом. Спускают компоновку для задавливания многокомпонентного состава. Компоновка при необходимости содержит пакер для создания избыточного давления или депрессии без воздействия на эксплуатационную колонну. При необходимости многокомпонентный состав закачивают с использованием колтюбинговой установки и пакеров для селективной обработки пластов. В зависимости от геологических условий и глубины залегания продуктивного пласта подбирают МКС 1. Для предотвращения выпадения нерастворимого осадка 2, МКС 1 не содержит фторсодержащих кислот. Соляная кислота по возможности максимально растворяет карбонатные соединения. Стабилизатор рН(оксиэтилидендифосфоновая, уксусная и другие кислоты) позволяет избежать загрязнения пласта вторичными осадками, так как она значительно медленнее реагирует с карбонатами, чем соляная кислота, поэтому введение их в состав позволяет замедлить скорость нейтрализации кислотного состава, и длительное время не позволяет растворенным солям выпасть в осадок. Растворитель и растворитель АСПО растворяют непосредственно АСПО и при контакте с органофильными глинистыми образованиями связывают адсорбированные органические соединения, которые блокируют обменные места на поверхности глинистых минералов и переводят их в окружающую глинистые минералы дисперсную среду, подготавливая их к последующей реакции обмена. Вытеснитель способствует удалению солейи С из призабойной зоны, для предотвращения выпадения нерастворимых осадков солей 2 6,36, образующихся в процессе реакции с фтористоводородной кислотой. Гидрофобизатор способствует смачиванию границы раздела сред и вследствие этого усиливает процессы капиллярной пропитки глинистых и карбонатных образований. Выбор ингибиторов,гидрофобизаторов растворителей АСПО производят в зависимости от пластовых температур и геологических условий. При необходимости производят технологический отстой для реагирования, вымыв продуктов реакции из скважины или извлечение продуктов реакции из продуктивного пласта. МКС 1 имеет определенную пропорцию двух кислот,стабилизатор и соляная кислота, причм соотношение 4 объема стабилизатора к объему солянной кислоты 1(5-40). Выдержанность пропорции необходима для сокращения рисков выпадения из кислотного раствора нерастворимого осадка солей и позволяет регулировать скорость реакции, то есть в зависимости от пластовых температур или коллекторских свойств увеличивают или уменьшают долю стабилизатора, для получения максимального эффекта от кислотной обработки. Объм МКС 1 зависит от количества карбонатных отложений в продуктивном пласте, желаемой глубины обработки призабойной зоны и вида обработки. В среднем 0,5 1,5 м 3 на метр перфорированного или открытого интервала. В зависимости от геологических условий и глубины залегания продуктивного пласта подбирают второй многокомпонентный состав(МКС 2). Производят его закачку в продуктивный пласт. По отношению к МКС 1 в МКС 2 добавляют фторсодержащую кислоту. Е введение позволяет преобразовывать структуру предварительно обезжиренных глинистых минералов и разрушать их. МКС 2 имеет определнную пропорцию трех кислот,стабилизатор, фторсодержащая кислота и соляная кислота, причм соотношение объема стабилизатора к объему фторсодержащей кислоты и к объму соляной кислоты составляет 1(1-10)(5-40). Выдержанность пропорции необходима для сокращения рисков выпадение из кислотного раствора нерастворимого осадка солей и позволяет регулировать скорость реакции, то есть в зависимости от пластовых температур или коллекторских свойств увеличивают или уменьшают долю стабилизатора, для получения максимального эффекта от кислотной обработки. Оптимальный состав подбирают экспериментальным путм на образцах керна. Увеличение процентного состава растворителя позволяет усилить дегидратацию, деблокировать поверхность глинистых минералов от органических соединений и более интенсивный вынос продуктов реакции из породы. Объм МКС 2 зависит от желаемой глубины обработки призабойной зоны, вида обработки и закачанного ранее объма МКС 1. В среднем 0,5 -1,5 м 3 на метр перфорированного или открытого интервала. При необходимости производят технологический отстой для реагирования. Производят отбор продуктов реагирования путм депрессионного воздействия. Отбор продуктов реагирования производят с помощью свабирования,компрессирования,эжекторного устройства или колтюбинговой установки. Скважину осваивают,при необходимости проводят гидродинамические исследовавания. В зависимости от геологических условий принимают решение о целесообразности применения МКС 3. МКС 3 не содержит кислотных компонентов и позволяет максимально очистить призабойную зону от продуктов реагирования и связанной воды. При необходимости производят технологический отстой,отбор продуктов реагирования и гидродинамические исследования. Оценку эффективности воздействия предлагаемого и известного составов по изучению фильтрационных характеристик пласта провели на насыпных линейных моделях длиной 10 см и диаметром 3 см, заполненных составляет кварцевым мелкозернистым песком с добавлением карбонатной фракции - 3. Модели насыщают углеводородной жидкостью, определяют начальную проницаемость. Закачку кислотного состава осуществляют в направлении, обратном закачке нефти. После закачки состава, модель выдерживают при температуре 20 С в течение 1 часа. Затем через модель прокачивают нефть до установившегося значения давления при фильтрации и определяют подвижность по нефти после обработки модели интенсифицирующим составом. По отношению к конечной подвижности к начальной рассчитывают фактор интенсификации. Подвижность определяют по формуле Р - перепад давления, атм. На основании рассчитанных подвижностей определяли величину интенсификации по формуле 1 подвижность нефти до закачки интенсифицирующего состава 2 - подвижность нефти после закачки интенсифицирующего состава. Результаты исследования фильтрационных свойств модели после обработки различными составами В ходе экспериментов было изучено влияние различных добавок на степень интенсификации. Была исследована зависимость фильтрационных характеристик кислотного состава от вида и концентрации различных добавок. В Таблице 2 представлены результаты исследования фильтрационных свойств модели после обработок различными составами. Таблица 2 Результаты исследования фильтрационных свойств модели после обработки различными составами Состав,-24-5 ИВВ 1- 1 КИ-1-1 ИПСостальное патент РФ 2346153 НС-12-2,5 бутилцеллозольв-7 Н 2- ост. патент РФ 2213216 1 оторочка НС-12 ИВВ-1- 1 Уксусная кислота - 0,5 КИ-1-1 толуол-1 ИПС-20 Н 2- ост. 2 оторочка НС -12- 2,5 Уксусная кислота -0,5 ИВВ-1- 1 ИПС-30 толуол-1 КИ-1 МР-1 Н 2- ост. 1 оторочка НС-24 ИВВ-1- 1 Уксусная кислота - 0,5 КИ-1-1 толуол-1 ИПС-20 Н 2- ост. 2 оторочка НС -24- 5 Уксусная кислота -0,5 ИВВ-1-1 ИПС-30 толуол-1 Проницаем ость Проницаемость модели после модели до обработки обработки составом,составом, мкм 2,мкм 2,0,018 0,025 0,016 0,033 Как следует из результатов исследования фильтрационных свойств модели после обработки различными составами, Увеличение концентрации соляной и плавиковой кислот для данной модели не дат значительного повышения проницаемости поэтому, для снижения стоимости, концентрация кислот снижена. Существенным отличием предлагаемого способа является многостадийное воздействие на коллектор,состоящего из определнной пропорции двух и трх кислот, позволяющее вытеснить солии С из призабойной зоны,избежать выпадения нерастворимого осадка с возможностью применения дополнительных стадий некислотной обработки. Применение в составе добавок, позволяющих эффективно разрушать глинистые образования,предварительно подготавливая их к реакции обмена,регулировать скорость реакции и глубину проникновения комбинированных составов для реагирования с пластом, эффективно удалять АСПО. Применение способа позволяет максимально очистить призабойную зону пласта в зависимости от геологических условий и выбрать количество стадий обработки и применяемые компоненты. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ обработки призабойной зоны пласта МКС (многокомпонентными составами), включающий задавливание в пласт многокомпонентных составов,отличающийся тем, что на первом этапе продавливают в продуктивный пласт МКС 1 (первый многокомпонентный состав),состоящий из стабилизатора,соляной кислоты,ингибитора,растворителя,вытеснителя,гидрофобизатора,5 растворителя АСПО и воды при следующем соотношении компонентов вмасс стабилизатор 0,1-5 соляная кислота 3-30 ингибитор 0,01-5 растворитель 0-50 вытеснитель 0-5 гидрофобизатор 0,01-5 растворитель АСПО 0-5 вода остальное. причм соотношение объема стабилизатора к объему соляной кислоты составляет 1(5-40), на втором этапе закачивают в пласт МКС 2 (второй многокомпонентный состав),состоящий из фторсодержащей кислоты, стабилизатора, соляной кислоты, ингибитора, растворителя, гидрофобизатора,растворителя АСПО и воды при следующем соотношении компонентов вмасс стабилизатор 0,1-5 фторсодержащая кислота 0,1 -10 соляная кислота 3-30 ингибитор 0,01-5 растворитель 0-70 гидрофобизатор 0,01-5 растворитель АСПО 0-5 вода остальное. причм соотношение объема стабилизатора к объему фторсодержащей кислоты и к объму соляной кислоты составляет 1(1-10)(5-40), производят технологический отстой, извлечение продуктов реакции и освоение скважины. 2. Способ по п.1, отличающийся тем, что на третьем этапе в пласт закачивают МКС 3 (третий многокомпонентный состав),состоящий из растворителя 1,растворителя 2,гидрофобизатора,стабилизатора и воды, при следующем соотношении компонентов в масс растворитель 1 10-90 растворитель 2 0-50 гидрофобизатор 0,1-15 стабилизатор 0-15 вода остальное. 3. Способ по любому из п.п.1-2, отличающийся тем, что дополнительно после каждого этапа обработки скважины МКС производят технологический отстой, извлечение продуктов реакции и освоение скважины. 4. Способ по любому из п.п.1-3, отличающийся тем, что в качестве фторсодержащих кислот используют фтористоводородную кислоту ,борфтористоводородную кислоту (В 4). 5. Способ по любому из п.п.1-3, отличающийся тем, что в качестве вытеснителя используют 41. 6. Способ по любому из п.п.1-3, отличающийся тем, что в качестве растворителя, растворителя 1 и растворителя 2 используют изопропиловый спирт,ацетон,этанол,метанол,нефрас или спиртовосодержащие отходы производств. 7. Способ по любому из п.п.1-3, отличающийся тем, что в качестве гидрофобизатора используют ИВВ-1, РХП-10, Нефтенол К, дипроксамин,алкилфенол и другие. 8. Способ по любому из п.п.1-3, отличающийся тем, что в качестве стабилизатора используют оксиэтилидендифосфоновую, уксусную, щавелевую и другие кислоты. 9. Способ по любому из п.п.1-3, отличающийся тем, что в качестве растворителя АСПО используют толуол нефтяной или 4,4-диметил-1,3-диоксан и другие. 10. Способ по любому из п.п.1-3, отличающийся тем, что в качестве ингибитора коррозии используют солинг, КИ-1 , ИКУ-118, амфикор, ТНХС и другие.
МПК / Метки
МПК: E21B 43/27
Метки: обработки, пласта, составами, зоны, мкс, призабойной, многокомпонентными, способ
Код ссылки
<a href="https://kz.patents.su/6-ip28935-sposob-obrabotki-prizabojjnojj-zony-plasta-mks-mnogokomponentnymi-sostavami.html" rel="bookmark" title="База патентов Казахстана">Способ обработки призабойной зоны пласта мкс (многокомпонентными составами )</a>
Предыдущий патент: Способ удаления асфальтосмолопарафиновых отложений нефти
Следующий патент: Способ подземного выщелачивания металлов
Случайный патент: Способ диагностики остеопороза позвоночника